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J. Phys. A :  Math. Gen. 23 (1990) 1765-1774. Printed in the UK 

Chaos-revealing multiplicative representation of quantum 
eigenstates 

P LeboeuftS and A Voros$§ 
t Division de Physique Theoriquell, Institut de Physique Nucleaire, 91406 Orsay Cedex, 
France 
$ Service de Physique Theorique de Saclayl, F-91191 Gif-sur-Yvette Cedex, France 

Abstract. The quantisation of the two-dimensional toric and spherical phase spaces is 
considered in analytic coherent state representations. Every pure quantum state admits 
therein a finite multiplicative parametrisation by the zeros of its Husimi function. For eigen- 
states of quantised systems, this description explicitly reflects the nature of the underlying 
classical dynamics: in the semiclassical regime, the distribution of the zeros in the phase 
space becomes one dimensional for integrable systems, and highly spread out (conceivably 
uniform) for chaotic systems. This multiplicative representation thereby acquires a special 
relevance for semiclassical analysis in chaotic systems. 

It is still a basic open problem in semiclassical mechanics to describe the individual 
eigenfunctions of a quantum system when the corresponding classical dynamics is 
chaotic. The simplest models are found among area-preserving maps on compact 
phase spaces of dimension two, of which several have been quantised. However, as far 
as rigorously proven chaotic maps are concerned (e.g. the cat and baker's maps), the 
torus T 2  is the only phase space occurring to date. (See recent reviews by Eckhardt 
1988, Voros 1989a, and references therein.) 

This paper is inspired by the successes of phase space representations for quantum 
eigenstates (Wigner: Hannay and Berry 1980, Husimi: Leboeuf and Saracen0 1990). 
From analytic coherent state representations for the torus and the sphere, we extract 
finite multiplicative parametrisations of the (pure) quantum states, which reveal dis- 
tinctive patterns of semiclassical behaviour for eigenstates of integrable and chaotic 
systems. 

The torus phase space is a periodically repeated unit square in suitable ( 4 , p )  
coordinates. As its quantum Hilbert space, we can take the space JVN of wavefunctions 
Iy)) periodic both in position and momentum representations. This space has aJinite 
dimension N ,  with the consistency condition 

2nNh = Area (= 1). (1) 

Usual representations of this quantum mechanics are discrete and labelled by the finite 
integer N ;  N + cc gives the classical limit (Hannay and Berry 1980). We prefer to use 
a continuous, actually analytic coherent-state representation of JVNr built out from the 
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standard (Weyl group) coherent states on the plane R2 (Klauder and Skagerstam 1985, 
Perelomov 1986). 

A non-normalised coherent state of the plane, centred at a point ( q , p ) ,  is 

lz) = exp(za+)lo) z = 2-’/’(q - ip) (2) 

and it has the kernel 

(z I 4’)  = (nft)-’14 exp(-[i(z2 + 4’*) - J2zq’]/ft). (3) 

The coherent state decomposition of a wavefunction Iy) over the whole line 

is an entire function ~ ( z )  of order 2, the Bargmann transform of Iy) (Bargmann 1961, 
1967). 

The adaptation to the torus is based on two observations. 

(i) A state Iw)) of &” admits a 
coordinate line as a periodicised sum 

+m Nzl - 

natural position representation on the infinite 

n/N - v )  ( 5 )  
v=-m n=O 

where yn are the discrete position components yn = ((nly)), the eigenstate In)) being 
‘localised’ at 4 = n/N mod 1. 

(ii) The original Bargmann transformation directly operates on the representation 
( 5 ) ,  which lies in the distribution space FP2 (in the notation of Bargmann 1967). There 
is consequently no need to invent a different transformation for iWN. With (1) and (3), 
(4) reduces to 

y(z) = ( 2 N p 4  1 O3(-inN(J2 z - n/N)liN) exp{-dV[z2 + (n/N)’ - 2J2z(n/N)]} y,, 

(6) 

N-I 

n=O 

where 8, is the Jacobi theta function (Whittaker and Watson 1965) 

v=-m 

We may also interpret (6) as a scalar product in 2, 

N-1 

w(z) = ((z I W)) = C((z ln) )w,  
n=O 

thereby defining the &“-coherent state ((zl, which obeys quasiperiod relations for v, p 
integers 

((z + 2-II2(v - ip)l = exp{nN[ipv + (v2 + p2)/2 + J2(v + ip)z])((zl. (8) 
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We now exploit the analytic properties of the representation ( 4 ) .  For Iw)) in X N ,  ~ ( z )  
is a function analytic in the fundamental square [0,2-'/'] x [0, 2-'/2] with its boundary 

included, and satisfying the continuation conditions drawn from (8) 

Such a function has the following general properties (compactness of phase space 
enters now): 

Like a 'polynomial of degree N' , ~ ( z )  has exactly N zeros in the square (zeros will be 
counted with their multiplicities) : 

(2ni)-' 6 z: dz = T3I2N( l  + i) mod (-!- ") 
J 2 '  J 2  

(ii) 

giving one constraint among the N zeros 

hi 

zj = 2-3!2N (1 + i) mod ( '> ./2? ./2 \ v -  v j= 1 

(iii) Of particular importance is the case N = 1, connected with the lattice rep- 
resentations of quantum mechanics (reviewed by Perelomov 1986). The Bargmann 
transform of the unique state in XI 

wl(z) = exp(-nz2)8,(--inJ2 z 1 i). (13) 

is 'the monomial' . Its single zero is constrained by (12) to lie at the centre zo of the 
square 

zo = 2-3/2(1 + i) . (14)  

(iv) The Weierstrass-Hadamard factorisation allows the reconstruction of entire 
functions from their zeros. Here, it reduces to a multiplication formula from elliptic 
function theory 

Consequently, ignoring the complex factor 2 (required by normalisation), we can 
represent each quantum state of Z N  as an (N - 1)-parameter family of points in the 
fundamental square, the complex zeros { z , } .  A similar scheme has been recently used in 
a different context, the quantised Hall effect (Arovas et a1 1988). 

For the phase space of a spin, the Bloch sphere S 2 ,  a similar treatment has also long 
existed. If S = i, 1, ... is the spin value, the Bargmann space H consists of ordinary 
polynomials of degree 2S, with dim H = 2 s  + 1 (Klauder and Skagerstam 1985). These 
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have 2 s  unconstrained zeros, and (15) is replaced by the elementary factorisation for 
polynomials. More generally, the factorisation approach can be used with many spaces 
of entire functions. In higher dimensions, however, one will run into all the difficulties 
of analytic function theory in several variables. 

Consider now the Husimi representation of a state lw) over the whole plane (see 
Kurchan et a1 1989 for the spherical case) 

For w in i f N ,  Ww becomes doubly periodic by (9), thereby defining a Husimi distribution 
over the torus. This Ww is not only positive as usual, but also precisely vanishing at 
the N zeros of ~ ( z ) .  (Hence, by positivity, an impure state will give strictly fewer zeros, 
and generically none). Moreover, W, factorises via (15), as 

where Wwl is the Husimi function of the ‘monomial’ w1 with N = 1 (C > 0 sets the 
normalisation). 

We have thus arrived at the conclusion that by itself, the set of zeros of Ww encodes 
the full quantum information, which is retrieved via (15). We therefore suggest that 
semiclassical analysis itself can be directly based upon the zeros of the Husimi function 
(rather than on the high density regions of Ww, or scars). Here, as in the WKB method, 
logw (or t p ’ / ~ ,  or log W,) appear to be the relevant functions. 

The most immediate semiclassical property of the zeros is a global one: their number 
is precisely N (in the square), and N + CO. Further semiclassical properties must then 
translate themselves upon the asymptotic distribution of the zeros as N + 30. We now 
confirm this idea by showing a sample of eigenstates in the Husimi representation, for 
various systems on the torus and the sphere. 

Each Husimi function Ww is plotted twice: the top plot, on a linear density scale, 
stresses in dark the peaks of Ww (classical features, scars), while the bottom plot, on 
a logarithmic density scale with an adjusted contrast factor, stresses as white spots the 
zeros of Ww (quantum features). 

Figure l(a) shows the ‘monomial’ y1 ( N  = l), given by (13), which is also the 
elementary factor in (15), while figure l(b) shows the coherent state IO)) for N = 16. 

Figure 2 shows eigenstates of Hamiltonians, this being the classically integrable 
case. 

The Harper Hamiltonian is H = 2 - cos 2np - cos 27q (on the torus). Its ground 
state looks very similar to the coherent state IO)) having the same N (cf figure l(6)). 
Figure 2(a)  shows the 15th state for N = 31, lying just below the classical separatrix 
energy (coordinates are shifted). The zeros are neatly aligned on four straight lines. In 
fact, all (non-degenerate) states of the system have this property. 

The Lipkin Hamiltonian on the sphere (Lipkin et a1 1965) is H = cos6 + 
f ~ s i n 2 8 c o s 2 q ;  figure 2(b) shows the second state of the quantised model having 
S = 15 and x = 0.5. Again, the zeros lie along curves, which depend on the classical 
energy but seemingly not on dim if. 

This is a property we have observed in all integrable examples studied. 
Eigenfunctions of chaotic maps are now displayed in figures 3 and 4. 



Chaos-revealing representation of quantum eigenstates 1769 

Figure 1. Husimi function plots. Top half: linear density scale; bottom half: a logarithmic 
density scale stressing the location of the zeros. (U)  The monomial VI (N = 1 ) ;  (b)  the 
coherent state IO)) (N = 16). 

Figure 3 shows, on the torus, two states of the quantised baker’s map with 
N = 64 (Balazs and Voros 1989, Saracen0 1990), chosen for their distinctive features 
on the linear scale: on figure 3(a), an ‘almost ergodic’ state; on figure 3(b), in shifted 
coordinates, a state strongly scarred by the unique classical fixed point at the origin. 
Unlike the former, the latter is highly concentrated and reminiscent of the integrable 
separatrix state of figure 2(a). However, the pictures on the logarithmic scale display 
a totally different connection: both baker states have their zeros highly spread out on 
the square, as opposed to the concentration along curves of integrable examples. This 
holds for all baker states; we have only found, for N = 2k, one isolated (arithmetical?) 
exception of a state with a dominantly linear distribution of zeros. 

The same property holds for the cat map (also defined on the torus). One ‘irregular’ 
(typical) state, and a very regular one (there are a few of them), are shown in figures 
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Figure 2. As figure 1, but showing eigenstates of integrable systems. (a)  Harper’s equation 
( N  = 31); (h)  Lipkin model ( S  = 15). 

4(a)-4(b), for the quantised cat map with N = 64 (Hannay and Berry 1980). 
Thus, irrespectively of the superficial features of the Husimi distribution (irregular 

or regular, heavily scarred or not), the zeros seem toJill, like a gas, the whole phase 
space area left out by the high density regions. We view this behaviour as a characteristic 
quantal signature of classical chaos. 

Finally, we have examined a kicked spin map on the sphere, which classically 
exhibits the generic regular-to-chaotic transition as a coupling constant /? = pLB is 
increased: for /? = 0.2 the phase space has a mixed structure, while for /? = 1 the 
classical motion looks totally chaotic (Nakamura et a1 1986). In the quantised version 
(S = 30), this transition seems to reflect itself in the organisation of the zeros. For the 
eigenfunction of figure 5(a) (/? = 0.2) some zeros are aligned and others spread out, 
while in figure 5(b) (/? = 1 )  the zeros diffuse over the whole sphere. All of this clearly 
requires further study. 
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Figure 3. As figure 1 ,  but showing two eigenstates of the baker's map ( N  = 64). 

The linear concentration of zeros for integrable systems has a semiclassical expla- 
nation. As A -+ 0, an eigenstate admits a finite WKB expression 

K 

v(z) - C A ,  exP[S,(z)lfil 
k = l  

where { S , }  are branches of the classical complex action in the z variable (Kurchan et a1 
1989, Voros 1989b). The vanishing of such y~ generically requires Re Sj = Re S ,  > Re S, 
for two branches j , k  ( I  running over all other branches involved). Each such equality 
defines a classical curve (a sort of anti-Stokes line), upon which the zeros are selected 
by a further condition, Im (Sj  - S,) = (2mn + constant)h, which makes them regularly 
distributed with spacing 2nA[Im (Si-SL)]-' = O(N- ' ) . Conversely, the product formula 
(1 5) over a distribution of zeros of this type will become equivalent to a WKB expression 
in the large-N limit. 
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Figure 4. As figure 1, but showing two eigenstates of the cat map (N = 64). 

By contrast, the observed distribution of zeros in all chaotic examples is roughly 
bidimensional, implying an average spacing O(N-'/*). This is the signature of an 
altogether different semiclassical regime. 

We risk an explanation connected with the ergodicity of the classical motion. This, 
and the correspondence principle, suggest that the quantum phase space distributions 
must tend to the microcanonical (i.e. uniform) density in the classical limit (see Eckhardt 
1988). With the Wigner distribution, this can only happen after some smoothing (its 
wild oscillations do not tend to vanish as h + 0). The Husimi function is precisely 
a Wigner function smoothed over widths O(,/h) = O(N-'/*): can it tend pointwise 
to the flat density? Now, the mere presence of the zeros, and their proliferation as 
N -+ 00, demonstrate that this smoothing is not sufficient. However, the spreading 
of those zeros should make the Husimi distribution more amenable to uniformisation 
upon further smoothing. Indeed, for identical N we have observed a much lower global 
contrast (before adjustment) in chaotic Husimi functions than in integrable ones. 
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Figure 5. As figure 1, but showing eigenstates of a kicked spin model (S = 30). (a) Mixed 
classical regime; (b)  chaotic classical regime. 

In conclusion, the zeros of Husimi functions offer new opportunities to semiclassical 
analysis in chaotic systems. First, we have yet to understand the dynamical significance 
of the zeros, and also to unveil their possible limit distributions (could these be 
uniform? or fractal?). Two approaches suggest themselves next: use (15) as a basis for 
semiclassical descriptions, thus generalising the WKB method; or apply the techniques 
of random matrix theory to the set of zeros, treating it as if it were the spectrum of a 
non-Hermitian operator. 
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